De Giorgi Techniques Applied to Hamilton-jacobi Equations with Unbounded Right-hand Side

نویسندگان

  • L. F. STOKOLS
  • ALEXIS F. VASSEUR
چکیده

In this article we obtain Hölder estimates for solutions to second-order Hamilton-Jacobi equations with super-quadratic growth in the gradient and unbounded source term. The estimates are uniform with respect to the smallness of the diffusion and the smoothness of the Hamiltonian. Our work is in the spirit of a result by P. Cardaliaguet and L. Silvestre [5]. We utilize De Giorgi’s method, which was introduced to this class of equations in [6].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

De Giorgi Techniques Applied to the Hölder Regularity of Solutions to Hamilton-jacobi Equations

This article is dedicated to the proof of C regularization effects of HamiltonJacobi equations. The proof is based on the De Giorgi method. The regularization is independent on the regularity of the Hamiltonian.

متن کامل

Existence and non-existence results for fully nonlinear elliptic systems

We study systems of two elliptic equations, with right-hand sides with general power-like superlinear growth, and left-hand sides which are of Isaac’s or Hamilton-Jacobi-Bellman type (however our results are new even for linear lefthand sides). We show that under appropriate growth conditions such systems have positive solutions in bounded domains, and that all such solutions are bounded in the...

متن کامل

Uniqueness for unbounded solutions to stationary viscous Hamilton–Jacobi equations

We consider a class of stationary viscous Hamilton–Jacobi equations as

متن کامل

Uniqueness results for convex Hamilton - Jacobi equations under p > 1 growth conditions on data

Unbounded stochastic control problems may lead to Hamilton-Jacobi-Bellman equations whose Hamiltonians are not always defined, especially when the diffusion term is unbounded with respect to the control. We obtain existence and uniqueness of viscosity solutions growing at most like o(1+ |x|p) at infinity for such HJB equations and more generally for degenerate parabolic equations with a superli...

متن کامل

[hal-00327496, v1] Uniqueness results for convex Hamilton-Jacobi equations under $p>1$ growth conditions on data

Unbounded stochastic control problems may lead to Hamilton-Jacobi-Bellman equations whose Hamiltonians are not always defined, especially when the diffusion term is unbounded with respect to the control. We obtain existence and uniqueness of viscosity solutions growing at most like o(1+ |x|p) at infinity for such HJB equations and more generally for degenerate parabolic equations with a superli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017